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Combining Early Exit and Selective Prediction for
Convolutional Neural Networks

Hasna Bouraoui , Chadlia Jerad , and Jeronimo Castrillon

Abstract—The deployment of CNN in real-time and resource-
constrained applications poses critical challenges due to their
computational demands and the need for reliable decision mak-
ing. In this paper, we combine adaptive inference via Early Exits
(EE) with Selective Prediction (SP) to address these challenges.
Early exits allow confident predictions at intermediate layers,
while selective prediction introduces uncertainty estimation mod-
ules, enabling the system to abstain from low-confidence decisions
or continue inference through deeper layers. This combined
design lowers the risk of overconfident but erroneous predictions
and improves the trade-off between performance and accuracy.
As a case study, we implement and evaluate our approach
on a real-time traffic sign detection task, processing the input
of an RGB camera in the forward direction. In this paper,
we demonstrate improved performance compared to baseline
models. Compared to SP-only (Selective Prediction) and EE-
only (Early Exit) baselines, our hybrid model achieves low
inference depth (1.20), leading to reduced computational demand
and latency. Despite this efficiency, the model maintains a high
prediction accuracy (90.3%) and a low abstention rate (1.6%),
ensuring fast and reliable decision making suitable for time-
critical embedded applications. This demonstrates an effective
trade-off between effective computation and predictive reliability.

Index Terms—Early Exit, Selective Prediction, Trade-offs,
Convolutional Neural Networks

I. INTRODUCTION

NOWADAYS, Convolutional Neural Networks (CNNs)
achieve state-of-the-art results across various domains.

However, their high computational cost and latency present
challenges for reactive, time-critical embedded systems. This
is especially critical in applications like autonomous driving,
real-time medical diagnostics, and edge computing. To deal
with these constraints, two strategies gained attention: Selec-
tive Prediction (SP) and adaptive inference. SP gives the model
the option to not make a prediction when it’s unsure, typically
when its confidence drops below a given threshold [1]. This
is especially useful in safety-critical contexts, where uncer-
tain cases can be deferred to humans, enhancing decision
reliability. Adaptive inference [2], on the other hand, takes
a different approach. Instead of running every input all the
way through the model, it adjusts computation on the fly. A
prominent example is early exits (EE) — where the model
makes predictions partway through, if it’s confident enough.
The model then exit early for simpler inputs, cutting down
computation during inference while maintaining decent accu-
racy for straightforward cases. In practice, EE strategies have
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proven effective at lowering both latency and energy use [3].
This relies on the assumption that the intermediate classifiers
can make confident decisions on some inputs. While this holds
true in many scenarios, it doesn’t always generalize across all
tasks or deployment settings. Selective prediction and adaptive
inference both have clear benefits, but utilizing them separately
has some drawbacks. SP on its own still requires running
every input through the entire network, including the abstained
ones, resulting in unnecessary computational overhead. While,
adaptive inference doesn’t allow for abstention. This forces
the model to make a prediction in low-confidence scenarios,
which is problematic in safety-critical applications. That’s why
combining both strategies leverages the most of their strengths.

In this paper, we show that by integrating EE mechanisms
with an SP strategy in a single architecture, a better balance
between efficiency, accuracy, and reliability is achievable for
real-time systems where latency and predictability are critical.
We present an approach to enable CNN to choose between
predicting early, abstaining, or proceeding to deeper layers
based on confidence estimates at intermediate exits, thereby
enabling time-aware and confidence-driven inference paths
that are essential for reactive systems. The key contributions
of this work are:

• We propose a unified and configurable hybrid approach
that combines EE and SP to balance runtime efficiency
and reliability in CNN.

• We formalize our hybrid approach as a three-way deci-
sion problem, supporting the runtime computed values:
predict, continue, and abstain.

• We evaluate our approach on the German Traffic Sign
Recognition Benchmark, achieving up to 3.5× computa-
tional speedup with minimal accuracy loss (0.5%), and
reduced average exit depth (from 3 to 1.08).

The paper is organized as follows. Section II presents the
theoretical background and related work. Section III details the
proposed hybrid approach. Section IV illustrates and evaluates
it on a traffic sign detection use case. Section V concludes and
outlines future directions.

II. THEORETICAL BACKGROUND AND RELATED WORK

We review in this section existing literature on selective
prediction, adaptive inference, and hybrid approaches, pro-
viding context for our proposed combined mechanism. SP
methods [4] improve the reliability of CNN by abstaining from
uncertain predictions. It is often referred to as confidence-
based abstention, allows models to retain predictions when
confidence is below a predefined threshold. This model is
common in applications where safety is very important and
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misclassifications can be very expensive, so humans can step
in or use a different processing method. In the domain of
neural networks, authors in [5] introduced a rejection strategy
based on output logits, comparing the highest and second-
highest activated logits to guide rejection decision. Authors
in [1] proposed a selective classification method to attain a
target risk with a defined confidence-rate function, building a
baseline for risk-controlled predictions. Recent advances in SP
have focused on architectural enhancements [6]. Alternative
approaches, such as Deep Gamblers in [7] and Self-Adaptive
Training [8] propose an additional category for abstention. Au-
thors in [9] performed a thorough examination of the selection
mechanisms of these models and highlighted their weaknesses.
Their findings suggest that the good performance of these
models is mainly due to the optimization process, leading to
a more generalizable model that subsequently enhances the
performance of SP.

Adaptive inference [2] reduces CNN computation by ad-
justing processing based on input complexity. A popular
strategy is early exiting (EE), which integrates multiple clas-
sifiers at different depths, allowing confident predictions to
exit early and avoid unnecessary computation. EE has been
applied across domains, including image classification [10].
The distinguishing factor among current methodologies is the
selection of confidence metrics, including prediction consis-
tency [11], and output entropy [12].

Combined methods use both confidence and uncertainty to
decide what to do next. Authors in [13] came up with ensemble
reuse techniques to make better use of resources in early exit
networks while still being able to abstain. In contrast to our
work, they proposes a reuse strategy by recycling the non
predicted samples and do not employ an explicit multi-criteria
thresholding. Our approach, however, is based on a three
way decision logic, combining EE and SP through calibrated
uncertainty thresholds and enabling dynamic routing at each
exit point. Numerous studies have suggested deferral-based
methodologies, and the choice to predict or defer is dictated
by a cost function [14], [15]. To the best of our knowledge,
we are the first to apply selective prediction and early exit
in a hybrid manner. Our proposed model extends these ideas
by implementing a three-way routing mechanism that enables
dynamic decisions to exit, continue processing, or abstain,
calibrated through multi-criteria optimization.

III. PROPOSED APPROACH: COMBINED EE AND SP

In our approach, we enhance a standard CNN by adding
intermediate decision blocks, which let the network make early
predictions when confidence is high enough. We combine
early-exit mechanisms with selective prediction via absten-
tion. The model can choose not to predict if it’s unsure.
This hybrid setup helps the network balance accuracy with
efficiency, adjusting its computational effort based on how
complex or uncertain an input is. As shown in Fig. 1 we
add exit points at representative intermediate layers, following
common practices in the literature. Each exit is extended with
a lightweight classifier (exit head) that processes intermediate
features. This is identified as the exit depth distribution.

Fig. 1. Combined Approach flow

We define two decision logic, both based on a routing
mechanism that evaluates whether the model should make an
early prediction, continue processing, or abstain: an entropy-
based III-A1 and a confidence-based decisions III-A2. The
effective performance of the hybrid decision logic relies on
well-calibrated thresholds III-B. We evaluate the computa-
tional savings achieved through early exits using the effective
computation metric. It represents the percentage of the full
model’s computation used on average, based on the exit depth
distribution. This metric quantifies the computational savings
achieved by EE. Formally, let Lk be the number of layers up
to exit k, and let Nk be the number of samples that exited at
exit k. Let L be the total number of layers in the full model.
Then, the effective computation is defined as:

Effective Computation =

(
1

N

K∑
k=1

Lk

L
·Nk

)
× 100% (1)

where K is the number of exits, N is the total number of
samples, and Lk

L is the fraction of the model used for exit k.

A. Decision Logic

1) Entropy-Based: Entropy is a scalar measure of uncer-
tainty. It measures the spread of the softmax probability output.
Higher entropy means greater uncertainty, while lower entropy
means more confident predictions.

The hybrid, entropy-based, model adds several exit points
to the network architecture, each with a simple classifier. To
measure uncertainty, the model computes the entropy of the
predicted class distribution at each exit. When the entropy is
below a predefined threshold τexit, indicating high confidence,
the model predicts early to reduce computational cost. If
the entropy exceeds a higher threshold τcontinue, suggesting
significant uncertainty, the model continues processing through
deeper layers to refine its prediction. In cases where the
entropy lies between τexit and τcontinue, reflecting moderate
uncertainty, the model abstains from making an immediate
decision and defers to a more reliable confidence estimator.
To quantify the model’s uncertainty at each exit point, we
compute the entropy of the softmax probability distribution
over the class predictions. Formally, let Hl(x) denote the
entropy of the softmax output at exit layer l for input x. The
model applies this decision logic:

Decisionl(x) =


Predict if Hl(x) < τexit

Abstain / Defer if τexit ≤ Hl(x) < τcontinue

Continue if Hl(x) ≥ τcontinue

Let pl(x) = softmax(zl(x)) be the class probability
distribution produced at exit layer l, where zl(x) ∈ RC is the
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logit vector for input x and C is the number of classes. Then,
the entropy at exit l is defined as:

Hl(x) = −
C∑

c=1

pl,c(x) log pl,c(x) (2)

where pl,c(x) is the probability assigned to class c by the
softmax output at layer l.

2) Confidence-Based: Confidence is the maximum
probability of the softmax distribution, it shows how sure
the model is of its most likely prediction. Low-confidence
samples are abstained to avoid unreliable predictions. Inputs
with low confidence are passed to further layers, to allow a
refinement before the decision. Similarly to the entropy-based
hybrid approach, the confidence score is defined as:

Confl(x) = max
c∈{1,...,C}

pl,c(x) (3)

The model applies the following decision logic:

Decisionl(x) =


Predict if Confl(x) ≥ τpredict

Abstain / Defer if Confl(x) ≤ τabstain

Continue otherwise

We note that entropy and confidence measure uncertainty
in opposite ways. Entropy increases with uncertainty, while
confidence decreases. The decision logic follows a monotonic
trend with uncertainty: as uncertainty increases, the model
shifts from prediction to abstention, then to deeper inference.

B. Threshold Calibration

Effective performance of the hybrid decision logic relies
on well calibrated thresholds for early prediction, abstention,
and continued inference. This builds up to identify values
for (τcontinue) and (τexit) in entropy-based approach, (τpredict)
and (τabstain) in confidence-based approach. These thresholds
regulate the model’s trade-off between performance, accuracy
and abstention rate. Threshold values are usually tuned for
each specific use case or model. They can be determined
through calibration procedure. In the case of CNNs, We used
a grid search over validation data to approximate suitable
thresholds for the decision logic. Our process for calibration
includes iteratively testing different entropy values as thresh-
olds to make decisions within a model, and then evaluating
on a validation set, how these different thresholds impact
the model’s performance. We also opted for balancing exit
weighting. We selected thresholds that balance the frequency
of early exits with the overall accuracy and abstention rate,
avoiding premature or overly delayed decisions. Finally, to
ensure consistent decision-making across layers, we jointly
calibrated the early exit threshold τexit and the continue thresh-
old τcontinue. A grid search on a validation set optimized the
trade-off between computational savings, abstention rate, and
overall accuracy. Although brute-force, grid search remains
popular in early exit and selective prediction research for its
simplicity and reproducibility.

IV. EVALUATION ON A TRAFFIC SIGN DETECTION SYSTEM

A. Use Case Descripton and Experimental Setup

To evaluate our approach, we use a MobileNetV3Small-
based CNN for traffic sign classification, suitable for edge
deployment. The model has 144 operation-level layers (e.g.,
convolutions, batch norms), grouped into 13 inverted residual
blocks and includes four classifier stages: three internal exits
and one final classifier. We placed the exits after block 2, 5,
and 11. This corresponds roughly to 22%, 49%, and 94% of
total network depth. This exit placement is balanced for easy
examples (block 2), efficient mid-path predictions (block 5),
and a final semantic content (block 11). We implemented the
use case in PyTorch, supporting configurable routing metrics
(entropy or confidence), which is also fully compatible with
post-training threshold calibration.

We perform extensive experiments to quantify the per-
formance of six model variants across accuracy, abstention,
average exit depth, and computational efficiency (Baseline,
EE-only entropy based, EE-only confidence based, SP-only,
Hybrid model entropy based and confidence based). We eval-
uated the model for the German Traffic Sign Recognition
Benchmark (GTSRB), a standard dataset comprising 43 traffic
sign categories with varying real-world visual conditions. Im-
ages are resized to 32×32 RGB format and processed through
augmentation, normalization, and training-validation splitting.
We performed the model training on a system equipped with
an NVIDIA RTX 3090 GPU with 24 GB of memory, while
the evaluation is done on a workstation with 8 CPU cores.

B. Evaluation

1) Evaluation Metrics: Our goal is to compare each model
variant in terms of predictive performance, computational
efficiency, and reliability under uncertainty. Effective Accuracy
measures the correctly classified samples among all samples in
the dataset, including the abstained ones. This metric penalizes
abstention and provides a comprehensive measure of overall
system performance. While Accuracy on predicted refers to
the number of samples that were correctly classified out of all
the predicted samples, highlighting the model’s classification
performance on confident decisions. Abstention rate denotes
the proportion of samples for which the model abstains due to
uncertainty, reflecting the system’s tendency to defer decisions
when unsure. Lastly, Average Exit Depth captures the mean
exit point across all predicted samples. We compute it using
normalized block indices, where each exit is associated with
the number of computational blocks traversed up to that point.
It serves as an indicator of the computational efficiency of the
early-exit mechanism, where lower values suggest that more
samples are exiting earlier, thereby reducing processing cost.

2) Results Interpretation: For the evaluation, we use the
variant without EE or SP as baseline. Table I reports the
main performance metrics across all six model variants. The
baseline achieves an accuracy of (88.78%). In contrast, the EE
Only (Entropy) model attains 89.40% accuracy with an aver-
age exit depth of only 1.06, demonstrating the effectiveness
of entropy-based early inference. The Hybrid (Entropy) model
achieves good prediction reliability (90.32%) while abstaining
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TABLE I
PERFORMANCE COMPARISON OF MODEL VARIANTS

Model Eff. Acc. Pred. Acc. Abst.% Avg. Exit Depth
Baseline 88.78 88.78 0 1
EE (Conf.) 88.83 88.83 0 0.29
EE (Entropy) 89.40 89.40 0 0.25
SP Only 88.12 89.71 1.77 1
Hybrid (Entropy) 88.87 90.32 1.61 0.28
Hybrid (Conf.) 87.09 89.05 2.21 0.25
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Fig. 2. Accuracy vs Computational Savings Comparison.

on only 1.6% of uncertain samples, demonstrating a well-
calibrated balance between accuracy and safety. Meanwhile,
the Hybrid (Confidence) model offers greater inference effi-
ciency (avg. exit depth: 1.08) with minimal loss in accuracy,
making both hybrid approaches outperforms the traditional
baselines for adaptive and reliable neural inference.

Fig. 2 illustrates the trade-off between effective accuracy
and computational savings across model variants. Both hy-
brid models achieve up to 75.8% in computation savings,
equivalent to a 3.5× theoretical speedup compared to the
full-depth baseline, while maintaining competitive accuracy
levels (87–89%). In addition, Fig. 3 highlights the trade-
off between effective computation and predicted accuracy of
different model variants. The hybrid models (entropy-based)
achieve higher predictive accuracy than both EE only and SP
only baselines, while using only about 24–25% of its compu-
tation. In contrast, the baseline and SP-only models achieve
similar accuracy but require full-depth inference, highlighting
the hybrid models’ ability to trade-off between computational
efficiency and prediction trustworthiness. Compared to the four
other variants, our hybrid models offer the best balance of
accuracy, computational savings, and reliability.

V. CONCLUSION AND FUTURE WORK

Our approach enables CNN systems to trade-off early
prediction, abstention, or deeper inference based on confi-
dence estimates. We showed, through the German Traffic Sign
Recognition Benchmark, that combining EE and SP reduces
computation while maintaining high accuracy and predictive
reliability. Future work will investigate tailoring thresholds to
exit depths based on input complexity. We will also explore
more complex benchmarks to further validate the generality
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of our hybrid approach. Another direction is to examine
alternative exit point placements.
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